
Journal of Data Science and Modeling, Vol. 1, No. 1, 77-97, December 2022

Assessment, Estimation and Modeling of the
Midpoint Coefficient for Imprecise Data

Amir Masoud Malekfar 1 , Farzad Eskandari2∗,
1. PhD candidate, Department of Statistics, Allameh Tabataba’i University, Tehran, Iran.

2. Professor of statistics, Allameh Tabataba’i University, Tehran, Iran.

Received: 12/10/2018 Accepted: 28/10/2018

Research Manuscript

Abstract: Imprecise measurement tools produce imprecise data. Interval-valued data is
usually used to deal with such imprecisions. Therefore interval-valued variables are used
in estimation methods. Linear regression models have recently modeled them. If the
response variable has any statistical distributions, interval-valued variables are modeled
under the generalized linear models framework. In this article, we propose a new consis-
tent estimator of a parameter in the generalized linear model with regard to distribution
of the response variable in the exponential family. A simulation study shows that the new
estimator is better than others based on particular distribution of the response variable.
We present the optimal properties of the estimators in this research.
Keywords: Interval-valued data, Generalized linear models, Consistent estimator, Sim-

ulation, Optimal properties.
Mathematics Subject Classification (2010): 57R19, 57N65, 05E45, 62Gxx.

∗Corresponding author:ffeskandari@yahoo.com



78 A.M. Malekfar & F. Eskandari

1. Introduction

Imprecise measurement tools are imprecise data producers. Imprecise-valued data and
a desire for increased precision of data are two motives for statisticians to use interval-
valued data rather than single-valued data. Diday (1987) revealed that singular-valued
data, variably termed as classical or imprecise-valued data, will result in loss of infor-
mation because singular-valued data depends on units of imprecise measurement. There-
fore, Diday (1987, 1989, 1995), Émilion (1997), Bertrand and Goupil (2000), Billard
and Diday (2002, 2003) and Billard and Diday (2006) proposed some methods for esti-
mating, modeling and analyzing imprecise-valued data. Diday and Emilion (1996, 1996,
1998) used interval-valued data for collecting of imprecise-valued data. In recent years,
Calle and Gómez (2001), Rivero and Valdes (2008), Trutschnig et al. (2009), Huber et
al. (2009) and Billard (2011) have shown that interval-valued data is the best collecting
method of big data and grouped data. Xu (2010) and Noirhomme - Fraiture and Brito
(2011) showed that interval-valued data is difficult to analyze with classical methods.

Different analyzing and modeling methods of interval-valued data have recently been
proposed as follows:

Billard and Diday (2000) introduced the Center Method (CM), which is built a lin-
ear regression model on centers of intervals. After obtaining parameter estimates, they
applied the fitted model to both lower and upper bounds of a new observation to achieve
an interval predicted response. This method concerns center points of interval-valued
data only. Hence, high volumes of information are lost by the CM. Neto et al. (2004),
de Carvalho et al. (2004) and Neto and de Carvalho (2008) introduced the Center and
Range Method (CRM). The method utilizes not only centers but also ranges of intervals
to fit regression models. Centers and ranges are separately used to do the fitting. Neto
et al. (2005) and Neto and de Carvalho (2010) proposed the Constrained Center Method
(CONCM). The regression model is the same as the CM under a restrictive condition.
Neto et al. (2005) and Neto and de Carvalho (2010) proposed the Constrained Center and
Range Method (CONCRM). The regression model is the same as the CRM under two
restrictive conditions. The CRM assumes that centers and ranges are independent and fit
models on them separately. In order to break assumption, Billard (2006) fitted centers and
ranges simultaneously as a bivariate model, either with (BCRMI) or without (BCRMO)
interaction terms between center and range variables (see also Neto et al., 2009). Blanco-
Fernández et al. (2011) presented and estimated a more flexible simple linear model, the
M model, between random interval variables. Wang et al. (2012) introduced the Com-
plete Information Method (CIM). The CIM defines the inner product of interval-valued
variables, and transforms the regression modeling into the computation of some inner
products.
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Diday and Emilion (1998) and Bertrand and Goupil (2000) introduced sample mean
and variance of interval-valued data. Billard and Diday (2002, 2003) developed the
method of observations with histogram-valued data. Gil et al. (2001, 2007), Billard
(2007) and Neto et al. (2007) analyzed dependence versus independence on interval-
valued data. A sample covariance was obtained by Billard (2007, 2008). Billard (2011)
and Le-Rademacher and Billard (2012) completed the method.

In recent articles, interval-valued variables have been modeled by Linear Regression
Models (LRMs). If the response variable has any statistical distributions in the expo-
nential family, interval-valued variables will be modeled in Generalized Linear Models
(GLMs) framework. This study aims to find a new consistent estimator of a parameter,
with regard to distributions of the response variable, in GLMs. A new estimator of a pa-
rameter is proposed for fitting GLMs on the interval-valued data using a new structure of
Monte Carlo Resampling (MCR).

Using this structure, we generate a large number of samples by randomly selecting
a single-valued point within each observed interval of the interval-valued independent
variables. We put each of the single-valued data in each of GLMs. After that, we generate
single-valued points of response variable using the samples in each model. Then, we
generate samples. We calculate the new and the old known estimator (Blanco-Fernández
et al., 2011) based on each sample. Following that, we calculate the mean of the obtained
estimated parameters from n, the sample size, repetitions.

Based on particular distributions of the response variables in the exponential fam-
ily, the new estimator is considered to be more effective than the old known estimator
(Blanco-Fernández et al., 2011) for fitting some GLMs on interval-valued data by using
Monte Carlo Simulation (MCS). The Mean Square Error (MSE) is used as the method of
evaluating the accuracy of the estimators. We introduce an asymptotic distribution of each
estimator according to the Liapunov Theorem (LT) because each asymptotic distribution
depends on n, the sample size. So we can not use the Central Limit Theorem (CLT).

Section 2 introduces the interval models of Y=αXM+βXS+γ+ε. These models are
GLMs. Definitions of symbols are proposed in Section 3. We propose a new structure of
MCR in this section. Subsections 4.1-4.2 introduce two, one new and one old, estimators
of α for fitting the models on interval-valued data based on the MCR structure and some
particular distributions of ε. Following this, the MSE of each estimator will be presented.
Section 5 studies two optimal properties, consistency, and asymptotic distribution, of the
estimators in large-sample conditions. Subsections 5.1-5.2 introduce an asymptotic dis-
tribution of each estimator. Limited ranges of intervals and n samples taken from each
interval, in large-sample conditions (n→ ∞), cause each asymptotic distribution depends
on n. According to some particular distributions of ε, Section 6 assesses a better estima-
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tor from Section 4 for fitting the models on interval-valued data. The paper ends with the
conclusion in Section 7.

2. Interval Models

From now on we will consider interval-valued experimental data belonging to the space
kc (R) ={ [a, b] : a, b∈R, a≤b}. Each interval A∈kc (R) is parametrized by means of a two-
dimensional value, defined in terms of its endpoints, (inf A, sup A) ∈R2 with inf A≤sup A.
Equivalently, the point (mid A, spr A)∈R×R+, where mid A =

inf A+ sup A
2 is the midpoint

of the interval, and spr A =
sup A−inf A

2 denotes the spread or radius, also characterizes the
interval A. The notation A =[inf A, sup A] or A =[mid A ± spr A] is used in each case.

Remark 2.1. The (inf, sup)- and the (mid, spr)-characterization for real intervals are
the usual ones chosen for the treatment of interval data. Any other pair of points allowing
the extremes of the interval to be computed, as the infimum and the amplitude, could be
used. One useful characterization when the intervals are imprecise observations of a real-
valued variable and it is possible to assume a distribution on that interval is the first and
third quartile. Nevertheless, this is not the case considered in this work. The (inf , sup)-
parametrization is not easy to use for statistical purposes given the order restriction that
it involves. In this sense, it is more advisable to use the (mid, spr)-parametrization, since
it only involves a non-negativity constraint on the second component, which is more op-
erative. Additionally, the meaning of the (mid, spr)-description for interval data is very
intuitive: the first component is related to the location of the interval and the second one
to the imprecision (in the sense of the distance to a precise quantity of R).

The formalization of the linear model for random intervals presented in Blanco-Fernández
et al. (2011) is based on the (mid, spr)-representation of the intervals. The notation
A =[mid A± spr A] can be split into two terms depending on the midpoint and spread val-
ues of A by means of the canonical decomposition A =mid A [1 ± 0] + spr A[0±1]. This
expression allows us to work separately with the mid and spr components of the interval,
but keeping the interval arithmetic. The intervals [1 ± 0] and [0±1] can be equivalently
expressed in their (inf, sup)-representation as [1, 1] and [−1, 1], respectively.

Let X and Y be two random intervals with finite second-order moments, and spr X
non-degenerated (so X is not reduced to a real random element). Based on the canoni-
cal decomposition, the generalized linear models between X and Y, the interval-valued
random independent and response variable, is formalized as

Y =α mid X [1 ± 0] +β spr X [0 ± 1] +γ [1 ± 0] +ε, (2.1)

where α and β are the coefficients, γ is an intercept term affecting the mid component
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of Y, and ε is an interval-valued random error variable such that E (ε |X) = [−δ,δ]∈kc (R),
so that δ≥0. For simpler notation, if we define B = [γ−δ,γ+δ] ∈kc (R), the generalized
linear function associated with the models 2.1 will be denoted by

E(Y |X ) =α XM+β XS+B,

where XM=X [1 ± 0] and XS=X [0 ± 1].
So based on the canonical decomposition, the linear models between X and Y is for-

malized as

Y =αXM+βXS+γ+ε. (2.2)

Model 2.2 are generalized linear models. Two specific assumptions H0: The consistency of α̂
H1: o.w

are investigated according to Modes 2.2.

3. A New Structure of MCR

In this section, we propose a new structure of Monte Carlo Resampling (MCR). The
structure is introduced to fit each of Models 2.2 on interval-valued data. One possible
drawback of the approach is that it is computationally intensive. By the nature of MCS, a
larger number of repetitions is always desired. The structure of MCR is implemented as
follows: For i = 1, . . . , k,

Symbols and formulas are introduced based on each of Models2.2 and Section 2 in
this section.
Given one random sample {Xb

i }
k
i=1 from X. So we define

X∗b={Xb
1, . . . , X

b
k}, (3.3)

where Xb
i is the bth observed sample of the ith interval of X. Hence Xb

i ε (inf (Xi), sup
(Xi)).

spr
(
X∗b

)
=Xr∗b=XS∗b={XSb

1 , . . . , X
Sb
k }, (3.4)

where XSb
i is the bth calculated value of XS

i , the spread of the ith interval of X.

mid (X∗b) = X
M∗b

={XMb
1 , . . . , X

Mb
k }, (3.5)

where XMb
i is the bth sample of the ith value of XM.

Y∗b={Yb
1, . . . , Y

b
k}, (3.6)
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where Yb
i is obtained from Yb

i = αXMb
i +βXSb

i +γ+εb
i .

YM∗b={YMb
1 , . . . , Y

Mb
k },

where YMb
i = αXMb

i +γ+εMb
i .

YI∗b={YIb
1 , . . . , Y

Ib
k },

where each sample YIb
i ε[Y

b
i −0.0005, Yb

i +0.0005].
When more than one sample is taken from each interval, we define:

X∗={X∗b}nb=1=
{
X∗1, . . . , X∗n

}
= {X1

1, . . . , X
1
k, . . . , Xn

1, . . . , X
n
k}. (3.7)

Y∗={Y∗b}nb=1=
{
Y∗1, . . . , Y∗n

}
= {Y1

1, . . . , Y
1
k, . . . , Yn

1, . . . , Y
n
k}. (3.8)

mid (X∗) = XM∗
={XM∗b}nb=1={XM1

1 , . . . , X
M1
k , . . . , XMn

1 , . . . , X
Mn
k }. (3.9)

spr(X∗) =Xr∗=XS∗={XS∗b}nb=1 = {XS1
1 , . . . ,X

S1
k . . . , X

Sn
1 , . . . , X

Sn
k }. (3.10)

YM∗={YM∗b}nb=1 = {YM1
1 , . . . , Y

M1
k , . . . ,Y

Mn
1 , . . . , Y

Mn
k }. (3.11)

YI∗={YI∗b}nb=1=
{
YI∗1

1 , . . . , Y
I∗n
k

}
={YI1

1 , . . . , Y
I1
k , . . . , YIn

1 , . . . , Y
In
k }.

3.1 The Process of Producing Random Sample

Use the uniform distribution, randomly produce the bth single-valued data point Xb
i from

Xi=[ai, ci]. Here b is the index of the bth sample and i is the index of the ith interval. Xi is
the ith interval of the only predictor X. So Xb

i ε[ai, ci] for i = 1, . . . , k, k is the number
of the intervals, and b = 1, . . . , n, n is the sample size. We generate each random sample
X∗b according to Equation 3.3. We produce the random sample X∗, namely Equation 3.7,
by using all of the samples X∗b for b= 1, . . . , n. We randomly produce the bth single-
valued data point XMb

i from XM
i =[di, di] for i = 1, . . . , k and b= 1, . . . , n. XM

i is the
ith interval of XM. So XMb

i ε[di, di] for i = 1, . . . , k and b = 1, . . . , n. We generate each
random sample XM∗b according to Equation 3.5. We produce the random sample XM∗,
namely Equation 3.9, by using all of the random samples XM∗b. We produce all values of
Y in each of Models 2.2. Also, the bth single-valued data point Yb

i is generated, in each of
Models 2.2, according to the bth single-valued data point Xb

i . We generate each random
sample Y∗b according to Equation 3.6. We produce the random sample Y∗ (see Equations
3.8, 3.10 and 3.11) by using all of the samples Y∗b for b = 1, . . . , n.

We randomly generate the bth single-valued data point YIb
i ε[Y

b
i −0.0005, Yb

i +0.0005]
for i = 1, . . . , k and b = 1, . . . , n. Hence we generate each random sample YI∗b={YIb

1

, . . . , YIb
k }. We produce the random sample YI∗={YI1

1 , . . . ,Y
I1
k , . . . , Y

In
1 , . . . ,Y

In
k }, by using
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all of the samples YI∗b for b = 1, . . . , n. Difference of Y and YI value is very small. This
paper will show that the difference is useful.

Produce the bth random sample:

Y∗b={Yb
1, . . . ,Y

b
k}, YI∗b={YIb

1 , . . . ,Y
Ib
k },X

∗b={Xb
1, . . . ,X

b
k}, IX

∗b={1,Xb
1, . . . ,X

b
k}

XM∗b={XMb
1 , . . . ,X

Mb
k }, IXM∗b={1,XMb

1 , . . . ,X
Mb
k },X

S∗b={XSb
1 , . . . ,X

Sb
k }.

So we produce:

Y∗={Y1
1, . . . ,Y

1
k, . . . ,Y

n
1, . . . ,Y

n
k},

YI∗={YI1
1 , . . . ,Y

I1
k , . . . ,Y

In
1 , . . . ,Y

In
k },X

∗={X1
1, . . . ,X

1
k, . . . ,X

n
1, . . . ,X

n
k},

XM∗={XM1
1 , . . . ,X

M1
k , . . . ,X

Mn
1 , . . . ,X

Mn
k }, XS∗={XS1

1 , . . . ,X
S1
k , . . . ,X

Sn
1 , . . . ,X

Sn
k }.

4. A Proposal Method

Based on the new structure of MCR in Section 3 and the estimator of ω1 in the simple
linear regression model Y =ω0+ω1X+ε, Subsection 4.2 proposes a new estimator of α,
namely Estimator 4.14, to fit each of Models 2.2 on interval-valued data. Also Subsection
4.1 re-introduces Estimator 4.12 as the old known estimator of α. This is the best estimator
of α which has ever been proposed by Blanco-Fernández et al. (2011) based on Y and
XM to fit each of the models on interval-valued data.

Is Estimator 4.12 better than Estimator 4.14 for all distributions of ε in Model 2.2?
The effectiveness of ε distributions in finding a better estimator is shown in Tables 1-2

and Figures 1-2. Subsections 4.1-4.2 introduce the estimation procedures to achieve two
estimators.

4.1 The Old Known Estimator

This subsection re-introduces Estimator 4.12. We provide the estimator according to the
random samples Y∗b and XM∗b (see Sections 2-3) for b=1, . . . , n. Also, we re-introduce
Estimator 4.13 based on Y∗ and XM∗ (see Sections 2-3). In Section 6, Table 1 shows
some particular distributions of ε that Estimator 4.12 is better than Estimator 4.14. We
re-introduce:

α̂=
1
n

n∑
b=1

α̂
b=

1
n

n∑
b=1

Cov
(
Y∗b, XM∗b

)
Var

(
XM∗b)

 (4.12)
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̂ γ

α

=1
n

n∑
b=1

̂ γb

αb

=1
n

n∑
b=1





1 XMb
1

.

.

.

1 XMb
k



T

.



1 XMb
1

.

.

.

1 XMb
k





−1

.



1 XMb
1

.

.

.

1 XMb
k



T

.



Yb
1

.

.

.

Yb
k


=





1 XM1
1

.

.

1 XM1
k

.

.

1 XMn
1

.

.

1 XMn
k



T

.



1 XM1
1

.

.

1 XM1
k

.

.

1 XMn
1

.

.

1 XMn
k





−1

.



1 XM1
1

.

.

1 XM1
k

.

.

1 XMn
1

.

.

1 XMn
k



T 

Y1
1

.

.

Y1
k

.

.

Yn
1

.

.

Yn
k



=

 γ̂
σ̂Y∗ ,XM∗

σ̂2
XM∗

 (4.13)

Estimators 4.12 and 4.13 have a same answer of α̂. The MSE of Estimator 4.12 is:

MSE
(̂
α
)
=

1
n

n∑
b=1

Cov
(
Y∗b, XM∗b

)
Var

(
XM∗b)

−α


2

+Var

1
n

n∑
b=1

Cov
(
Y∗b, XM∗b

)
Var

(
XM∗b)


 .

It is introduced according to the MCR structure in Section 3.

4.2 A New Estimator

This Subsection introduces Estimator4.14 as a new estimator of α for fitting each of Model
2.2 on interval-valued data. The estimator is proposed based on the random samples XM∗b

and YI∗b (see Sections 2-3) for b = 1, . . . , n. Also, we propose Estimator 4.15 based on
YI∗ and XM∗ (see Sections 2-3). In Section 6, Table 2 shows some particular distributions
of ε that Estimator 4.14 is better than Estimator 4.12. We propose:

α̂=
1
n

n∑
b=1

α̂
b=

1
n

n∑
b=1

Cov
(
YI∗b,XM∗b

)
Var

(
XM∗b)

 . (4.14)
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̂ γ

α

=1
n

n∑
b=1

̂ γb

αb

=1
n

n∑
b=1





1 XMb
1

.

.

.

1 XMb
k



T

.



1 XMb
1

.

.

.

1 XMb
k





−1

.



1 XMb
1

.

.

.

1 XMb
k



T

.



YIb
1

.

.

.

YIb
k


=





1 XM1
1

.

.

1 XM1
k

.

.

1 XMn
1

.

.

1 XMn
k



T

.



1 XM1
1

.

.

1 XM1
k

.

.

1 XMn
1

.

.

1 XMn
k





−1

.



1 XM1
1

.

.

1 XM1
k

.

.

1 XMn
1

.

.

1 XMn
k



T 

YI1
1

.

.

YI1
k

.

.

YIn
1

.

.

YIn
k



=

 γ̂
σ̂YI∗ ,XM∗

σ̂2
XM∗

 (4.15)

Estimators 4.14 and 4.15 have a same answer of α̂. Based on the MCR structure in Section
3, the MSE of Estimator 4.14 is:

MSE
(̂
α
)
=

1
n

n∑
b=1

Cov
(
YI∗b,XM∗b

)
Var

(
XM∗b)

−α


2

+Var

1
n

n∑
b=1

Cov
(
YI∗b,XM∗b

)
Var

(
XM∗b)


 .

Two tables in Section 6, Tables 1-2, show that MSE values of the estimators depend
on distributions of ε in Model 2.2. Also the mentioned section represents that under
particular distributions of ε, each of Estimators 4.12 and 4.14 is a better estimator with
the least MSE value in comparison to the other one.

5. Optimal Properties of α̂ in Large-Sample Conditions

In this section, we utilize a resampling idea (see Section 3) to fit Model 2.2 on interval-
valued data. It not only accounts for internal variations of intervals but also derives an
approximate sampling distribution of each estimator via the new structure of MCR.

In this section, consistency of Estimators 4.12, 4.14 and asymptotic distribution of
each estimator are studied in large-sample conditions, n→ ∞. Subsections 5.1-5.2 intro-
duce an asymptotic distribution of each of the estimators according to Sections 2-3 and
some particular distributions of ε.
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This study uses the LT instead of the CLT. Limited ranges of intervals and n samples
taken from each interval, in large-sample conditions (n→ ∞), cause each asymptotic
distribution depends on n.

5.1 Optimal Properties of the Old Known Estimator

We study two optimal properties, consistency and asymptotic distribution, of Estimator
4.12 in large-sample conditions, n→∞, in this subsection.

Theorem 5.1. Estimator 4.12 is a consistent estimator.

Proof. We know, YM∗ and YS∗ (see Sections 2-3) are the center and the spread of Y∗

variable. Also εM∗ and εS∗ (see Section 2) are the center and the spread of ε∗ variable.
XM∗is independent of XS∗, YS∗, εS∗ and εM∗. We know α̂ =

σ̂Y∗ ,XM∗

σ̂2
XM∗

, so α̂−α=

σ̂Y∗ ,XM∗

σ̂2
XM∗
−α. Hence:

Cov
(
Y∗,XM∗

)
= Cov

(
YM∗+YS∗,XM∗

)
= Cov

(
YM∗,XM∗

)
= Cov

(
αXM∗+εM∗,XM∗

)
=ασ2

XM∗+Cov
(
ε

M∗,XM∗
)
.

We can write α̂−α=
Cov(εM∗, XM∗)

σ2
XM∗

, therefore E
(̂
α−α

)
= E

(
Cov(εM∗, XM∗)

σ2
XM∗

)
= 0, since

XM∗ is independent of εM∗. Also Var
(̂
α
)
= 1

n Var
(

Cov(εM∗,XM∗)
σ2

XM∗

)
→ 0 as n → ∞. So α̂,

namely Estimator 4.12, is a consistent estimator of α. �

Based on Sections 2-3, the variance of the consistent estimator is:

var
(
α̂

)
=

var (Y∗)
n.var

(
XM∗) (5.16)

Theorem 5.2. Under conditions of Model 2.2, if E(‖mid X,mid Y‖4)< ∞ (where ‖.‖ de-

notes the Euclidean norm) and 0 <
σ2
εM∗

σ2
XM∗
< ∞, then

√
n

(̂
α−α

) L
→N

0, σ2
εM∗

σ2
XM∗

 (5.17)

Distribution 5.17 is an asymptotic distribution of the old estimator. The distribution is
rewritten according to Section 3 and Equation 5.18. In this subsection, a definition of εM∗

variable is:

ε
M∗=((εM∗1)

T
, . . . ,(εM∗n)

T
)
T

(5.18)
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Where

ε
M∗b= mean

(
Y∗b

)
−

cov
(
Y∗b,XM∗b

)
var

(
XM∗b) .

((
XM∗b

))
+̂γ

 for b = 1, . . . , n.

. . . γ̂ is offered in Equation 4.13.

Definition 1.
We know α̂=

(̂
α1, . . . , α̂n

)
, where α̂b is the bth value of α̂ according to the bth set of

the data source (see Estimator 4.12).

We provide the LT condition according to Definition 1. The LT condition, namely Equa-
tion 5.19, for establishment of Distribution 5.17 is as follows:

E(
n∑

b=1

∣∣∣ α̂b − −α
∣∣∣3)

2

= o(
n∑

b=1

(
σY∗b√
σ2

XM∗b

)
2
)
3

(5.19)

We propose two sides of the distribution by establishing the condition.

Proof. Let us write according to Theorem 5.1

α̂−α=
Cov

(
εM∗, XM∗

)
σ2

XM∗

,

E
(√

n
(̂
α−α

))
=
√

n .E
(̂
α−α

)
= 0 as n→ ∞,

Var
(√

n
(̂
α−α

))
= n

 σ2
εM∗

n.σ2
XM∗

 =
σ2
εM∗

σ2
XM∗

as n→ ∞.

�

5.2 Optimal Properties of the New Estimator

Let’s study two optimal properties, consistency and asymptotic distribution, of Estimator
4.14 in large-sample conditions, n→∞.

Theorem 5.3. Estimator 4.14 is a consistent estimator.

Proof. We know, YM∗ and YS∗ (see Sections 2-3) are the center and the spread of Y∗

variable. Also εM∗ and εS∗ (see Section 2) are the center and the spread of ε∗ variable.
Difference of Y∗ and YI∗ are defined as e∗. We can say, e∗ is an imposed error variable.
So eM∗ and eS∗ are the center and the spread of e∗.
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XM∗is independent of XS∗, YS∗, eS∗, eM∗, εS∗, εM∗ and ε∗. We know α̂ =
σ̂YI∗ ,XM∗

σ̂2
XM∗

, so

α̂−α=
σ̂YI∗ ,XM∗

σ̂2
XM∗
−α. Hence:

Cov
(
YI∗,XM∗

)
= Cov

(
YM∗+YS∗ + eM∗ + eS∗,XM∗

)
= Cov

(
YM∗,XM∗

)
= Cov

(
αXM∗+εM∗,XM∗

)
=ασ2

XM∗+Cov
(
ε

M∗,XM∗
)
.

We have α̂−α=
Cov(εM∗, XM∗)

σ2
XM∗

, therefore E
(̂
α−α

)
= E

(
Cov(εM∗, XM∗)

σ2
XM∗

)
= 0, since XM∗ is

independent of εM∗. Also Var
(̂
α
)
= 1

n Var
(

Cov(εM∗,XM∗)
σ2

XM∗

)
= 1

n (
σ2
εM∗

σ2
XM∗

) → 0 as n → ∞. So α̂,

namely Estimator 4.14, is a consistent estimator of α. �

Based on Sections 2-3, the variance of the consistent estimator is:

var
(̂
α

)
=

var
(
YI∗

)
n.var

(
XM∗) (5.20)

Theorem 5.4. Under conditions of Model 2.2, if E(
∥∥∥mid X,mid YI

∥∥∥4
)< ∞ (where ‖.‖

denotes the Euclidean norm) and 0 <
σ2
εM∗

σ2
XM∗
< ∞, the

√
n

(
α̂−α

) L
→N

0 , σ2
εM∗

σ2
XM∗

 (5.21)

Distribution 5.21 is an asymptotic distribution of the new estimator. Distribution 5.21
is written according to Section 3 and Equation 5.22. In this subsection, a definition of εM∗

variable is:

ε
M∗=((εM∗1)

T
, . . . ,(εM∗n)

T
)
T

(5.22)

Where

ε
M∗b= mean

(
YI∗b

)
−

cov
(
YI∗b,XM∗b

)
var

(
XM∗b) .

((
XM∗b

))
+̂γ

 for b = 1, . . . , n.

γ̂ is offered in Equation 4.15. Based on Definition 1, the LT condition (see Equation
5.23) for establishment of the asymptotic distribution is as follows:E(

n∑
b=1

∣∣∣ α̂b − −α
∣∣∣3)

2

= o(
n∑

b=1

(
σYI∗b√
σ2

XM∗b

)
2
)
3

(5.23)

By establishing this condition, two sides of the asymptotic distribution are created.
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Proof. of theorem 5.4. Let us write according to Theorem 5.3

α̂−α=
Cov

(
εM∗,XM∗

)
σ2

XM∗

,

E
(√

n
(̂
α−α

))
=
√

n .E
(̂
α−α

)
= 0 as n→ ∞,

Var
(
kkn

(̂
α−α

))
= n

 σ2
εM∗

n.σ2
XM∗

 =
σ2
εM∗

σ2
XM∗

as n→ ∞.

�

6. A Simulation Study

We compare the estimators for each of Model 2.2, via simulated data sets, which are gen-
erated in the new structure of MCR (see Section 3). Let X, XM, XS be the interval-valued
independent variable, the center of X, the spread of X, and Y be the interval-valued re-
sponse variable. We consider one set of coefficients (α, β, γ) = (0.6, 0.2, 0) in each of
Models 2.2. We assess the accuracy of the estimators of α in each model. X8 (see artifi-
cialeg data from mplot package in R software) is as the center of X. By using the uniform
distributions, we randomly generate a single-valued data point Xb

i from the ith interval
of the predictor X = (X8−0.0005, X8+0.0005 ) for i = 1, . . . , 50 and b = 1, . . . , 1000.
The MCR structure is implemented according to 50 separate intervals of X and 1000 are
samples taken from each of the intervals. We generate each random sample X∗b for each
value b according to the MCR structure in Section 3. The remaining random samples are
created based on the MCR structure in Section 3.

A simulation study shows that the correlation between any two intervals is almost zero
and the internal correlation of each interval is almost one. Since 1000 samples are taken
from each interval, the ranges of the intervals are equal to 0.001, depend on each other.

We summarize some simulation results in Tables 1-2. In each table, we report the
mean of the obtained midpoint coefficients from 1000 repetitions based on each ε distri-
bution in Models2.2.

Which of the consist estimators of α is better than the other one according to all
distributions of ε?
The MSE column of Table 1 shows Estimator 4.12 is better than the other one according
to some particular distributions of ε, in the last column of the table, in Models 2.2.

The MSE column of Table 2 shows that Estimator (14) is better than the other one
according to some particular distributions of ε, in the last column of the table, in Models
2.2.
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Table 1: The superiority of Estimator 4.12 based on some particular distributions of ε

Estimator α̂ Bias(α̂) Var (α̂) MSE (α̂) ε

(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)

0.6016
0.5265
0.5985
0.5338
0.5996
0.5800
0.6027
0.2925
0.5996
0.6077
0.5996
0.5897
0.6001
0.5954

0.0016
-0.0734
-0.0014
-0.0661
-0.0003
-0.0199
0.0027
-0.3074
-0.0003
0.00771
-0.0003
-0.0102
0.0001
-0.0045

0.0018
5e-11
0.0042
5e-11
0.0001
5e-11
0.0333
5e-11
1e-05
5e-11
1e-05
5e-11
1e-05
5e-11

0.0018
0.0054
0.0042
0.0043
0.0001
0.0003
0.033
0.0945
1e-05
6e-05
1e-05
0.0001
1e-05
2e-05

F(1,25,0)
F(1,25,0)
F(50,5)
F(50,5)
Gamma(1,2)
Gamma(1,2)
Gamma(0.5,0.1)
Gamma(0.5,0.1)
Beta(5,3)
Beta(5,3)
Beta(5,5)
Beta(5,5)
Beta(5,1)
Beta(5,1)

None of the above tables, Tables 1-2, will show the absolute superiority of one of the
estimators over another one.

Figure 1 shows the behaviors of the MSE of two estimators according to some partic-
ular distributions of ε (see Table 1). Estimator 4.12 is better than the other one in Figure
1.

Figure 2 shows the behaviors of the MSE of two estimators based on some particular
distributions of ε (see Table 2). Estimator 4.14 is better than the other one in Figure 2. So
none of two consistent estimators of α is better than the other one based on all distributions
of ε.

7. Conclusions

In the last decade, interval-valued variables have been modeled by LRMs. If the response
variable has any statistical distributions, interval-valued variables will be modeled in the
GLMs framework.

One possible drawback of the new MCR structure is that it is computationally inten-
sive. By the nature of MCS, a larger number of repetitions is always desired. However,
we believe that its good properties outweigh this disadvantage. First, it relieves the need
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Table 2: The superiority of Estimator (4.14) based on some particular distributions of ε
Estimator α̂ Bias(α̂) Var (α̂) MSE (α̂) ε

(4.12) 0.600734 0.000734 0.0007042 0.000704 N(0,1)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)
(4.12)
(4.14)

0.5909
0.6001
0.5964
0.4563
5.8006
0.6001
0.6007
0.5988
0.5795
0.5996
0.5933
0.60003
0.5995
0.5999
0.6149
0.6002
0.6113
0.6000
0.5990
0.6000
0.5999
0.6000
0.5996
810.1115
-1.8195
0.6028
0.5915
0.5998
0.5972
0.6002785
0.6060
0.5994
0.6000

-0.0090
0.0001
-0.0035
-0.1436
5.2006
0.0001
0.00075
-0.0011
-0.0204
-0.0003
-0.0066
3e-05
-0.0004
-7e-05
0.0149
0.0002
0.0113
7e-05
-0.0009
1e-05
-1e-05
4e-05
-0.0003
809.5115
-2.4195
0.0028
-0.0084
-0.0001
-0.0027
0.0002
0.0060
-0.0005
2e-05

5e-11
2e-05
5e-11
105.6827
5e-11
2e-05
5e-11
0.0004
5e-11
0.0003
5e-11
1e-06
5e-11
0.0010
5e-11
0.0001
5e-11
7e-06
5e-11
2e-06
5e-11
6e-07
5e-11
582010775
5e-11
0.0150
5e-11
0.0001
4e-11
0.0001
5e-11
7e-05
5e-11

8e-05
2e-05
1e-05
105.7034
27.0464
2e-05
5e-07
0.0004
0.0004
0.0003
4e-05
1e-06
1e-07
0.001
0.0002
0.0001
0.0001
7e-06
8e-07
2e-06
1e-10
6e-07
1e-07
582666084
5.85444
0.0150
7e-05
0.0001
7e-06
0.0001
3e-05
7e-05
6e-10

N(0,1)
Beta(3,0.6)
Beta(3,0.6)
C (0,1)
C (0,1)
F(100,200,10)
F(100,200,10)
F(10,200,10)
F(10,200,10)
F(200,10,10)
F(200,10,10)
Ln(0.046,0.046)
Ln(0.046,0.046)
χ2 (0.25,0.25)
χ2 (0.25,0.25)
Beta(0.01,0.01)
Beta(0.01,0.01)
N(0,0.1)
N(0,0.1)
Gamma(0.1,5)
Gamma(0.1,5)
Exp(30)
Exp(30)
F(1,1)
F(1,1)
Bin(500,0.95)
Bin(500,0.95)
Geo(0.85)
Geo(0.85)
Beta(0.2,0.2)
Beta(0.2,0.2)
Beta(0.7,0.7)
Beta(0.7,0.7)
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Figure 1: Assessment of the MSE of two estimators according to each distribution of ε
from Table 1
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Figure 2: Assessment of the MSE of two estimators according to each distribution of ε
fromTable 2
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to develop complex methodologies for interval-valued data. Second, it is flexible in the
sense that one can modify the structure of MCR depending on specific problems. For
example, one may assume a non-uniform distribution within an interval such as truncated
normal distribution.

In this paper, we introduce a new estimator, using the structure of MCR based on YI

and XM, alongside the old known estimator, based on Y and XM. The structure of MCR
randomly generates a large number of single-valued data sets; each of them consists of
points randomly chosen within the observed intervals of X, XM and YI. In the structure,
internal variations in the interval-valued observations of the predictor variable X are fully
utilized.

We summarize some simulation results in the tables. In each table, we report the
mean of the obtained midpoint coefficients from n repetitions based on each ε distribution
in Models 2.2. Assessments of Models 2.2 on the interval-valued data show that none of
the two consistent estimators of α is better than the other one based on all distributions of
ε.

By using the sampling distributions obtained from the random sampling process, a
new asymptotic distribution of each estimator is introduced based on the LT. Since the
ranges of the intervals are limited, so each asymptotic distribution depends on n in large-
sample conditions (n→ ∞). Hence the condition of independence is not established. Also,
the variance of each estimator depends on n. So the LT must be used instead of the CLT.

This research paper has certain theoretical, empirical, and methodological contribu-
tions: First, the study proposes a new method to investigate the effect of ε distribution
in choosing a better estimator of α in each of Models2.2. Second, the proposed method
fully makes use of the variability of the interval-valued data of X variable because the
estimated coefficients of α from n repetitions, based on each estimator, are obtained via
the new structure of MCR. Third, in the study, to increase the precision of the obtained
estimated coefficients of α, we try to limit the sampling to intervals, single-valued data
points, of the variable X based on the new structure of MCR. By entering the values listed
in each of the models, we generate the values of the response variable. This will cause
the imprecision imposed according to a random number from each of the X and Y inter-
vals simultaneously to be limited to random numbers from each of the intervals of X in
the parametric model. Last, this research presents the imprecision imposed to Y as YI

according to the MCR structure in Section 3. The study shows that this imprecision is
imposed on providing a consistent superior estimator for some specific ε distributions.
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