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Abstract:

This paper presents approximate confidence intervals for each function of pa-

rameters in a Banach space based on a bootstrap algorithm. We apply a kernel

density approach to estimate the persistence landscape. In addition, we evaluate

the quality distribution function estimator of random variables using the integrated

mean square error (IMSE). The results of the simulation studies show a signifi-

cant improvement achieved by our approach compared to the standard version

of confidence intervals algorithm. Finally, the real data analysis demonstrate the

accuracy of our method compared to previous works for computing the confidence

interval.
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1. Introduction

In recent years, the increased rate of data generation in some fields has emerged the

need for some new approaches to extract knowledge from large data sets. One of

the approaches for data analysis is topological data analysis (TDA), which refers to

a set of methods for estimating topological structure in data (point cloud)(see the

survey Carlsson (2009); Ghrist (2008); Carlsson (2014); Edelsbrunner and Harer

(2009)). A persistence homology is a fundamental tool for extracting topological

features in the nested sequence of subcomplexes (Edelsbrunner et al (2002)). In

Chazal and Bertrand (2017), the authors introduced a TDA from the perspective

of data scientists. Since the use of TDA has been limited by combining machine

learning and statistic subjects, we need to create a set of real-valued random vari-

ables that satisfy the usual central limit theorem and allow us to obtain approxi-

mate confidence interval and hypothesis testing. In the present study, we propose

an alternative approach to approximate the sampling distribution and compute in-

terval without some presupposition. This approach, which is asymptotically more

accurate than the computation of standard intervals, analyzes a sample data pop-

ulation and identify the probability distribution of data. Due to the limitation of

barcode and persistence diagram with combining statistics, we use a sequence of

function such that λk(t) : R→ R̄ where R̄ denotes the extended real numbers and

λk(t) is persistence landscape (Bubenik (2015)). Next, we create a real-valued

random variable by applying some functional in separable Banach space, and we

obtain the list of real-valued random variables. In the present work, we aimed at

proposing a nonparametric inference of data to infer an unknown quantity to keep

the number of underlying assumptions as weak as possible. The remainder of this

paper is organized as follows: In section 2, we review the necessary background of

persistence landscape. In section 3, we provide theoretical background from non-

parametric approach. Finally, in section 4, we apply our approach on a sampling

of objects.

2. Background of Persistence Landscape

A simplicial complex K is defined for representing a manifold and triangulation of

topological space X. K is a combinatorial object that is stored easily in computer

memory and can be constructed by several methods in high dimensions with any

metric space. A subcomplex L of simplicial complex K is a simplicial complex

such that L ⊆ K. A filtration of simplicial complex K is a nested sequence of
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subcomplexs such that K0 ⊆ K1 ⊆ . . . ⊆ Km. To create this object, you can see

the (Khuyen et al (2014); Chambers et al (2010); K. Dey et al (2013) and Silva

and Carlsson (2004)).

The fundamental group of space X (π1(X,x0) at the basepoint x0), as an im-

portant functor in algebraic topology, consist of loops and deformations of loops.

The fundamental group is one of the homotopy group πn(X,x0) that has a higher

differentiating power from space X, however, this invariant of topological space X

depends on smooth maps and is very complicated to compute in high dimensions.

Thus, we must use an invariant of topological space that is computable on the

simplicial complex. Homology groups show how cells of dimension n attach to

subcomplex of dimension n− 1 or describe holes in the dimension of n (connected

components, loops, trapped volumes,etc.). The nth homology group is defined as

Hn = ker ∂n/im∂n+1 = Zn/Bn such that ∂n is the boundary homomorphism of

subcomplexs, Zn is the cycle group and Bn is boundary group. The nth Betti

number βn of a simplicial complex K is defined as βn = rank(Zn) − rank(Bn).

Through filtration step, we tend to extract invariant that remains fixed in this

process, thus persistence homology satisfies this criterion for space-time analysis.

Let Kl be a filtration of simplicial complex K, the pth persistence of nth homology

group of Kl is Hb,d
n = Zbn/(B

b+d
n ∩ Zbn). The Betti number of pth persistence of

nth homology group is defined as βb,dn for the rank of free subgroup (Hb,d
n ). To vi-

sualize persistence in space-time analysis, we should find the interval of (i, j) that

is invariant constantly through the filtration and obtain a topological summary

from the point cloud.

Now, by rewriting the Betti number of the pth persistence of nth homology group,

we have:

λ(b, d) =

βb,d if b ≤ d

0 otherwise

To convert λ(b, d) function to a decreasing function, we change coordinate on it,

Let m =
b+ d

2
and h =

d− b
2

, The rescaled rank function is:

λ(m,h) =

βm−h,m+h if h ≥ 0

0 otherwise

Definition 2.1. The persistence landscape is a function λ : N× R→ R̄ where R̄
denoted the extended real numbers (introduced by Bubenik (2015)). In the other

words, persistence landscape is sequence of function λk : R→ R̄ such that:

λk(t) = sup(m ≥ 0|βt−m,t+m ≥ k). (2.1)
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We assume that our persistence landscape lies in separable Banach space (Lp).

Let Y : (Ω,F ,P) → R be a real value random variable on underlying probability

space, Ω is a sample space, F is a σ-algebra of events, and P is a probability mea-

sure. The expected value E(Y ) =
∫
Y dP and Λ is the corresponding persistence

landscape. If f is a functional member of Lq with
1

p
+

1

q
= 1, let

Y =

∫
fΛ =‖ fΛ ‖1 .

Then √
n[Ȳn − E(Y )]

d−→ N(0, V ar(Y )).

3. Nonparametric on Persistence Landscapes

The basic idea of this approach is to use data to infer an unknown quantity without

any presumption. For a more detailed exposition, we refer the reader to Wasserman

(2006). The first problem is to estimate the cumulative distribution function

(CDF), which is an important problem in our approach.

Definition 3.1. Let X1, . . . , Xn ∼ F where F (x) = P (X ≤ x). We estimate F

with the empirical distribution function F̂n which is the CDF that puts mass
1

n
at

each data point Xi. Formally,

F̂n =
1

n

n∑
i=1

I(Xi ≤ x)

where

I(Xi ≤ x) =

1 if Xi ≤ x

0 otherwise.

Let X1, . . . Xn ∼ F and let F̂n be the empirical CDF, Then, at any fixed value

of x E(F̂n(x)) = F (x) and V (F̂n(x)) =
F (x)(1− F (x))

n
, where V (F̂n(x)) denotes

variance of empirical CDF.

Definition 3.2. A statistical functional T (F ) is any function of F . The plug-in

estimator of θ = T (F ) is defined by

θ̂n = T (F̂n).

A functional of the form
∫
a(x)dF (x) is called a linear functional where a(x)

denoted a function of x. The plug-in estimator for linear functional T (F ) =
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∫
a(x)dF (x) is:

T (F̂n) =

∫
a(x)dF̂n(x) =

1

n

n∑
i=1

a(Xi).

For an approximation of the standard error of a plug-in estimator, use the

influence function as follows:

Definition 3.3. The Gâteaux derivative of T at F in the direction G is defined

by:

LF (G) = lim
ε→0

T ((1− ε)F + εG)− T (F )

ε

The empirical influence function is defined by L̂(x) = LF̂n
(x). Thus,

L̂(x) = lim
ε→0

T ((1− ε)F̂n + εG)− T (F̂n)

ε
.

Definition 3.4. If T is Hadamard differentiable with respect to d(F,G) = supx |F (x)−
G(x)| then √

n(T (F̂n)− T (F )) N(0, τ2)

where τ2 =
∫
LF (x)2dF (x) and  denotes convergence in distribution. Also,

(T (F̂n)− T (F ))

ŝe
 N(0, 1)

Such that

ŝe =
τ̂√
n

and τ̂ =
1

n

n∑
i=1

L2(Xi).

3.1 Bootstrap Confidence Intervals

There are several ways to construct bootstrap confidence intervals that are differ-

ence from accuracy criterion. Let θ = T (F ) and θ̂n = T (F̂n) be an estimator for θ.

We tend to estimate a nonparametric confidence interval for functions of θ. The

pivot Rn = θ̂n − θ. Let H(r) denotes the CDF of the pivot:

H(r) = PF (Rn ≤ r).

Let C∗n = (a, b) where

a = θ̂n −H−1
(
1− α

2

)
and b = θ̂n −H−1

(α
2

)
Since a and b depend on the unknown distribution H, we should form a bootstrap

estimate of H as:

Ĥ(r) =
1

B

B∑
i=1

I(R∗n,b ≤ r)
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Where R∗n,b = θ̂∗n,b − θ̂n. Let r∗β denote the β sample quantile of (R∗n,1, . . . , R
∗
n,B)

and let θ∗β denote the β sample quantile of (θ∗n,1, . . . , θ
∗
n,B). Note that r∗β = θ∗β −

θ̂n. Follows that an approximate 1 − α confidence interval is Cn = (â, b̂) is a

nonparametric confidence interval a least (1− α), where

â = θ̂n − Ĥ−1
(
1− α

2

)
= θ̂n − r∗1−α/2 = 2θ̂n − θ∗1−α/2

b̂ = θ̂n − Ĥ−1
(α

2

)
= θ̂n − r∗α/2 = 2θ̂n − θ∗α/2.

3.2 Quality of Estimator

The goal of nonparametric density estimation is to estimate f with as few as-

sumptions about f as possible. We denote the estimator by f̂n. We will evaluate

the quality of an estimator f̂n with the risk, or integrated mean squared error,

R = E(L) where

L =

∫
(f̂n(x)− f(x))2dx (3.2)

is the integrated squared error loss function. The estimators depend on some

smoothing parameter h chosen by minimizing an estimate of the risk. The loss

function, which we now refer to as function of h, is:

L =

∫
(f̂n(x)− f(x))2dx

=

∫
f̂2n(x)dx− 2

∫
f̂n(x)f(x)dx+

∫
f2(x)dx.

The last term does not depend on h so minimizing the loss is equivalent to mini-

mizing the expected value, therefore the cross-validation estimator of risk is:

Ĵ(h) =

∫ (
f̂n(x)

)2
dx− 2

n

n∑
i=1

f̂(−i)(Xi) (3.3)

where f̂(−i) is the density estimator obtained after removing the ith observation.

Theorem 3.5. Suppose that f ′ is absolutely continuous and that
∫ (
f ′(u)

)2
du <

∞, Then,

R(f̂n, f) =
h2

12

∫ (
f ′(u)

)2
du+

1

nh
+ o(h2) + o(

1

n
). (3.4)

Where xn = o(an) this means that limn→∞ xn/an = 0. The value h∗ that mini-

mizes (3.5) is

h∗ =
1

n1/3

(
6∫

(f ′(u))2du

)1/3

. (3.5)
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With this choice of binwidth,

R(f̂n, f) ∼ C

n2/3
(3.6)

where C = (3/4)2/3
(∫ (

f ′(u)
)2
du
)1/3

.

The proof of Theorem 3.5 can be seen in appendix Wasserman (2006). We

see that with an optimally chosen binwidth, the risk decreses to 0 at rate n−2/3.

Moreover, it can be seen that kernel estimators converge at the faster rate n−4/5

and that in a certain sense no faster rate is possible.

We discuss kernel density estimators, which are smoother and can converge to the

true density faster. Here, the word kernel refers to any smooth function K such

that K(x) ≥ 0 and∫
K(x)dx = 1,

∫
xK(x)dx = 0 and σ2

K ≡
∫
x2K(x)dx > 0. (3.7)

Some commonly used kernels are the following: where

the Gaussian kernel: K(x) =
1√
2π

exp−x
2/2

the tricube kernel: K(x) =
70

81

(
1− |x|3

)3
I(x)

I(x) =

1 if |x| ≤ 1

0 otherwise

Definition 3.6. Given a kernel K and a positive number h, called the bandwidth,

the kernel density estimator is defined to be

f̂n(x) =
1

n

n∑
i=1

1

n
K
(x−Xi

h

)
. (3.8)

Theorem 3.7. Assume that f is continuous at x, hn → 0, and nhn → ∞ as

n→∞. Then, f̂n(x)→ f(x).

Proof. The claim proof by weak low of large number(WLLN) states that the f̂n(x)

converges with a probabiliy towards the probability density of random variables

of persistence landscape.
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4. Applications

In this section, we calculated the nonparametric methods on persistence land-

scapes to confirm accuracy of our methods respect to another approach, using R

programming language with TDA package by Terese Fasy et al (2014).

4.1 Sphere and Torus

We sample from the sphere and torus uniformly with respect to the surface. Let

R be the major radius and r as the minor radius, we use an explicit equation in

Cartesian coordinates for a torus, which is:(
R−

√
x2 + y2

)2
+ z2 = r2.

For 1000 points, we construct a filtered simplicial complex as follows. First, we

form the Vietoris-Rips complex R(X, ε), which consists of simplices with vertices

in X = {x1, . . . , xn} ⊂ Rd and diameter at most ε. The sequence of Vietoris-

Rips complex obtained by gradually increasing the radius ε create a filtration of

complexes. We denote the limit of filtration of the Vietoris-Rips complex with 5

and maximum dimension of homological feature with 1(0 for components, 1 for

loops). To compute landscape function in Equation 2.1, we set t ∈ [0, 5], k =

1. We construct 100 random variables by some functional in Banach space, the

logarithm function is our plug-in estimator, and the empirical influence function is

different among random variables with plug-in estimator. We repeated the related

algorithm for 100 times to obtain the upper and lower confidence interval. Table

1 present the nonparametric bootstrap computed using the approach for a 95%

critical value with a few assumptions about persistence landsapces. As shown in

Figures 1, we create 100 random variables and 500 times bootstrap sample data

and replaced with orginal data. We showed that using a confidence interval such

as Ȳ ±z∗ σ√
n

, gives 0.06628939 for density estimation of the sphere and 0.02067551

for torus, which is difference between upper and lower confidence interval. On the

other hand, using nonparametric method with correct kernel as the tricube kernel

and h∗, we obtained 0.0004472946 for sphere and 0.0003435891 for torus points,

which are significant different. Now, to evaluate the quality of an estimator f̂n

with respect to f with integrated mean squared error, we apply related algorithm

which is obtain Figure 2 is for 100 times with 0.002 precision of bandwidth h and

Gaussian kernel for sphere points and for torus with difference between below and

upper confidence interval in 100 times, is 0.00004416.
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Figure 1: We sample 500 points uniformly for a sphere with radius 2, in row

1, column 1 plot density of random variables of persistence landscape, in row 1,

column 2 plot ĵ(h) with 0.002 percision that minimum value is 0.0029, in row 1,

column 3 plot kernel density estimator with bandwidth 0.056 tricube kernel. In

row 2, column 1 we use bootstrap method for alternate generating random variate

with persistence landscape, in row 2, column 2 plot ĵ(h) with 0.002 percision that

minimum value is 0.0934, in row 2, column 3 plot kernel density estimator with

bandwidth 0.004 and tricube kernel.
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Figure 2: We run 100 times to evaluate minimize estimated risk R(f̂n, f) for points

on sphere in row 1 and torus in row 2 with Guassian kernel.
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Method 95% Interval

pivotal (4.248799, 4.319345)

normal (3.929793, 4.406627)

studentize (4.297297, 4.418873)

percentile (4.017076, 4.087621)

Method 95% Interval

pivotal (1.498743, 1.540386)

normal (1.241105, 1.566729)

studentize (2.415224, 2.95656)

percentile (1.267447, 1.309091)

Table 1: In the left column, we calculated bootstrap confidence interval with four

commonly used accurate approaches. We sampled 1000 points for the sphere. The

right column is the same for torus points.

Acknowledgment

The authors gratefully acknowledge the support of the center of statistical learning

and its application at Allameh Tabatabai University (under grant No. P/H/040).

We would like to thank Naiereh Elyasi for her helpful discussions.

References

Ghrist, R. 92008), Barcodes: The persistent topology of data, BULLETIN (New
Series) OF THE AMERICAN MATHEMATICAL SOCIETY , 45.

Carlsson, G. (2014), Topological pattern recognition for point cloud data, Acta
Numerica, 23, 289-368.

Edelsbrunner, H. and Harer, J. (2009), computational topology an introduction,
American Mathematical Society.

Edelsbrunner, H., Letscher D. and Zomorodian, A. (2002), Topological persistence
and simplification, Discrete and Computational Geometry, 28, 511–533.

Zomorodian, A. (2005), Topology for Computing, Cambridge University Press.

Carlsson, G. (2009), Topology and Data, Bulletin of the American Mathmatical
society, 2, 255-308.

Chazal, F. and Bertrand, M. (2017), An Introduction to Topological Data Analy-
sis: Fundamental and Practical Aspects for Data Scientists, arxiv:1710.04019v1.



44 S. Pakniat

Bubenik, P. (2015), Statistical Topological Data Analysis using Persistence Land-
scapes, Journal of Machine Learning Research, 16, 77-102.

Le N. K., Martins, P., Decreusefond, L. and Vergne, A. (2014), Construction of
the generalized Cech complex, arXiv:1409.8225,2014.

Chambers, E.W., de Silva, V., Erickson, J. and Ghrist, R. (2010), Vietoris Rips
Complexes of Planar Point Sets, Discrete and Computational Geometry, 44(1),
75-90.

Dey, T.K., Fan, F. and Wang, Y., (2013), Graph Induced Complex on Point
Data, In Proceedings of the Twenty-ninth Annual Symposium on Computational
Geometry, 107–116.

De Silva, V. and Carlsson, G. (2004), Topological estimation using witness com-
plexes, Proc. Sympos. Point-Based Graphics.

Wasserman , L. (2006), All of Nonparametric Statistics, Springer.

Fasy, B.T., Kim, J., Lecci, F. and Maria, C. (2014), Introduction to the R package
TDA, arXiv:1411.1830 2014.


	Introduction
	Background of Persistence Landscape
	Nonparametric on Persistence Landscapes
	Bootstrap Confidence Intervals
	Quality of Estimator

	Applications
	Sphere and Torus


