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Abstract:

In this paper, a new adaptive Monte Carlo algorithm is proposed to solve the

systems of linear algebraic equations arising from the Black–Scholes model to price

European and American options. The proposed algorithm, offers several advan-

tages over the conventional and previous adaptive Monte Carlo algorithms. The

corresponding properties of the algorithm and Convergence theories are discussed,

and numerical experiments are presented, which demonstrate the computational

efficiency of the proposed algorithm. The results are also compared with other

methods.
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1. Introduction

High dimensional systems of linear algebraic equations (SLAEs) are arising from

real world problems (e.g., Alexandrov and et al. (2003, 2011); Dimov and et al.

(1998)). The large linear systems can be obtained directly or after discretization of

partial differential or integral equations (e.g., Baykus and Sezer (2010); Dehghan

and Hajarian (2012)). Therefore the choice of an appropriate approach for solving

large sparse SLAEs is a problem of unquestionable importance in many scientific

and engineering applications.

Adaptive Monte Carlo algorithms are stochastic algorithms which are preferable

for solving high dimensional SLAEs. Some advantages of adaptive Monte Carlo al-

gorithms described in Rubinstein (1981); Alexandrov and et al. (2011); Farnoosh

and Aalaei (2015) are:

• They are more efficient than direct or iterative numerical algorithms.

• They are good candidates for parallelization.

• They have much faster convergence and need fewer random paths than the

conventional method does.

Adaptive Monte Carlo methods introduced by Halton to estimate the solution

of SLAEs in Halton (1962). These methods improve the convergence of the con-

ventional Monte Carlo method exponentially. Because of the advantages of these

methods, several researchers have implemented them in different areas. Empirical

studies have been discussed for two adaptive Monte Carlo methods with geomet-

ric convergence in Lai (2009). In Farnoosh and Aalaei (2015); Farnoosh and et

al. (2015); Aalaei and Manteqipour (2021), adaptive Monte Carlo algorithms

were proposed using the refinement method for solving SLAE with more accurate

results, and the proposed algorithms were implemented to solve option pricing

problems and two dimensional Fredholm integral equations. In Dimov and et al.

(2015), a Monte Carlo algorithm was proposed for solving SLAEs, and it was

combined with the sequential Monte Carlo method to improve the results. A new

Monte Carlo method for solving SLAEs is presented in Vajargah and Hasanzadeh

(2020) and the convergence of the method is discussed.

The advantages of adaptive Monte Carlo algorithms are author motivation for

study on this work. In this paper, we propose an adaptive Monte Carlo algorithm

that needs fewer random paths than adaptive algorithms presented in Farnoosh

and Aalaei (2015) and Lai (2009). To confirm the efficiency of the proposed
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algorithm, the adaptive Monte Carlo algorithms are applied to approximate the

value of European and American options. According to our best knowledge, Monte

Carlo methods have been widely applied to option pricing and other financial

problems (see e.g., Han and Lai (2010); Jasra and Moral (2011)). However

evaluating option prices based on the proposed algorithm, has been investigated

for the first time in this paper.

2. Option Pricing

The well known Black Scholes model for pricing European put option has been

described in Farnoosh and Aalaei (2015) by the equation:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r − q)S ∂V

∂S
− rV = 0, (2.1)

with the final condition V (S, T ) = max(E−S, 0) and boundary conditions V (0, t) =

Ee−r(T−t)and V (S, t) ≈ 0 as S →∞, where S,E, T, r are the current price of the

asset, the strike price, the expiry time, the risk free interest rate, respectively.

Also, S is assumed to behave dS = (r − q)Sdt + σSdW , where dW is a Wiener

process, r and σ are the drift rate and the volatility of the asset, respectively. In

this case, there is the closed form solution. However, for more styles of options,

there are not closed form solutions. Stochastic methods can be used to price these

options. In this regard, the adaptive Monte Carlo algorithm can be used to value

European options, and pricing formulas for these options can be checked using this

method.

The general discretization (finite difference) method can be used to approximate

the solution of (2.1), Wilmott and et al. (1995) where θ ∈ (0, 1) is the parameter

of discretization. Assume that Vij = V (i∆S , j∆t), 0 < i < N, 0 ≤ j ≤ M . The

Black Scholes model can be formulated as the following linear systems:

CV j+1 = DV j + bj , (2.2)

where
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bj =
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0
...

0

θuN−1VNj + (1− θ)uN−1VNj+1

 ,
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The linear system obtained in each time step will be approximated using the

adaptive Monte Carlo algorithm, and at the end, the solution vector will be

the price of the European option. To describe an American put option using

the Black Scholes model, we assume V (S, t) ≥ max(E − S, 0), final condition

V (S, T ) = max(E − S, 0) and boundary conditions V (0, t) = Ee−r(T−t) and

V (S, t) ≈ 0 as S →∞.

For American option pricing, the linear system (2.2) should be solved in each time

step, and the solution vector should be compared with the final condition, and the

result will be the solution vector in that time step. The solution vector will be

calculated for j = M, . . . , 0 and at the end, the solution vector will be the price of

the American option.

We solve the linear system (2.2) using the following adaptive Monte Carlo algo-

rithms.

3. Adaptive Monte Carlo algorithms

Monte Carlo algorithms have proved to be a valuable and flexible computational

tool in modern finance and have been developed within the past years to price

the options. Also, It is well known that Monte Carlo methods are more effective

and more preferable than direct and iterative numerical methods for solving large

sparse systems. In this chapter, we present, propose and analyze adaptive Monte

Carlo algorithms for solving the linear systems obtained using finite difference for
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option pricing. We then proceed to analyze the convergence of the algorithm, and

discuss the corresponding properties of the algorithms. Consider that we are going

to solve the system of linear equations

Bx = F, (3.3)

using Monte Carlo algorithms. Introducing A = Aij
n
i,j=1 = I − B, where I is an

identity matrix, we have x = Ax+ F and therefore using recursive formula

x(k+1) = Ax(k) + F, (3.4)

We have an estimator for x under the assumption maxi
∑n
j=1 |Aij| < 1 and the

following Monte Carlo algorithms converge. In all following algorithms, indepen-

dent random paths of Markov chain will be simulated with initial distribution

p = (p1, · · · , pn) and transition matrix P .

In this section, for better understanding the differences between algorithms, we

discuss the conventional Monte Carlo method and the Halton adaptive Monte

Carlo algorithm presented in Halton (1962). Also, the adaptive Monte Carlo al-

gorithm presented in Farnoosh and Aalaei (2015) is reviewed, and a new adaptive

Monte Carlo algorithm is proposed.

3.1 Conventional Monte Carlo algorithm

The base of the conventional Monte Carlo method described in Rubinstein (1981)

is to express each component of the solution vector as the expectation of some

random variable. To estimate the inner product 〈h, x(k+1)〉, we generate Z random

paths i
(s)
0 → i

(s)
1 → · · · → i

(s)
k and calculate θk via θk(h) = 1

Z

∑Z
s=1 η

(s)
k (h), where

η
(s)
k (h) =

h
i
(s)
0

p
i
(s)
0

∑
m = 0kw

(s)
m F

i
(s))
m

and w
(s)
m = w

(s)
m−1

A
i
(s)
m−1

i
(s)
m

P
i
(s)
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i
(s)
m

, w
(s)
0 = 1.

3.2 Halton adaptive Monte Carlo algorithm

For Halton adaptive Monte Carlo algorithm described in Halton (1962), Consider

F (0) = F, θ
(0)
k = 0, F (d) = F (d−1) − Bθ(d−1)

k , d = 1, · · · , r, where r is the number

of stages and θ
(d)
k is the approximate solution of

B∆dx = F (d), (3.5)

using described conventional Monte Carlo method which random paths are gener-

ated through a fixed transition matrix P . Then

ϕ
(d)
k (h) = ϕ

(d−1)
k (h) + θ

(d)
k (h),
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is the approximated solution of SLAE (3.3). It is shown in Halton (1962) that

lim
r→∞

F (r) = 0, lim
r→∞

θ
(r)
k = 0, lim

r→∞
ϕ

(r)
k = xj ,

where xj is the j th component of the exact solution to SLAE (3.3). Note that if

r = 1, we have the conventional Monte Carlo method.

3.3 Adaptive Monte Carlo algorithm in Farnoosh and Aalaei

(2015)

In the adaptive Monte Carlo algorithm proposed in Farnoosh and Aalaei (2015),

which we call AMC1, the transition matrix P is fixed for all stages. Therefore

we can use the same random paths generated through the transition matrix P for

all of the stages. It means that, we do not need to calculate w
(s)
m for each stage

because they are fixed for all stages.

3.4 Proposed Adaptive Monte Carlo algorithm

An idea proposed by Spanier to improve the efficiency of adaptive Monte Carlo

methods is to use a branching process in which many correlated random walks

are processed in parallel. As described in Lai (2009), in a branching process,

random walks are generated using the same rules as before, but instead of com-

puting one component at a time corresponding to each discrete source index, each

component whose index is visited by a random walk receives contributions. A

simple example is used to illustrate this idea. Suppose that A is a 3 × 3 matrix

and, the random path is 1 → 3 → 1 → 2 → 3 → 1. Then for estimating x1,

the path 1 → 3 → 1 → 2 → 3 → 1 is used, and the paths 2 → 3 → 1 and

3→ 1→ 2→ 3→ 1 are used to estimate x2 and x3, respectively.

In the new adaptive Monte Carlo method proposed in this article, we use this

idea and the assumption that the initial distribution p and the transition matrix

P of the Markov chain are fixed for all components and all stages. Therefore,

the same random paths are used for all components of the solution vector and all

stages. Then the total number of random paths with length k(> n) to estimate the

solution vector in our proposed algorithm, is Z which the length of random paths

should be at least n. So the total number of random variables in the proposed

algorithm is at least nZ. We note that the total number of random variables in

our proposed algorithm in Farnoosh and Aalaei (2015) is knZ. Also, the total

number of random variables for the presented algorithm in Lai (2009) is at least
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rnZ. Therefore the proposed algorithm in this paper needs less random variables

comparative to both of mentioned algorithms, and it can be less time consuming.

Furthermore, the proposed algorithm has a simple structure, low cost, desirable

speed, and accuracy and is easy to be parallelized.

3.5 Convergence

To examine the convergence of the proposed algorithm, we should define some

notations as follows. Consider F (0) = F,∆0x = x and Eq. (3.3) for stage r as

B∆rx = F (r), (3.6)

where ∆rx and F (r) are obtained by the following recursive equations

∆rx = ∆r−1x−∆r−1
k x,

F (r) = F (r−1) −B∆r−1
k x,

and ∆r
kx is the approximate solution of SLAE (3.3) obtained by using Eq. (3.4),

k times. Considering S0 = ∆0
kx and Sr = Sr−1 + ∆r

kx, clearly, we have

x = Sr + ∆r+1x, (3.7)

and the following theorem will be proven.

Theorem 3.1. Under the assumption ‖A‖ < 1 and ∆r
0x = 0, as k, Z and r tend

to infinity, ϕ
(r)
k converges to x.

Proof. From Eq. (3.7), we have x =
∑r
d=1 ∆d

kx + ∆r+1x. We prove the theorem

in two parts. At First, we prove that limr→∞∆rx = 0, and then we prove θ
(r)
k

converges to ∆r
kx. Therefore, the theorem will be concluded.

From Eq. (3.4) and (3.5), we have

∆rx = A∆rx+ F (r),

∆r
kx = A∆r

k−1x+ F (r).

Then we can obtain

∆rx = ∆r−1x−∆r−1
k−1x = A(∆r−1x−∆r−1

k−1x) = · · · = Ak∆r−1x,
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and

∆rx = Ak∆r−1x = A2k∆r−2x = A3k∆r−3x = · · · = A(r−1)kx.

Therefore

‖∆rx‖ ≤ ‖A(r−1)k‖.‖x‖, (3.8)

Since ‖A‖ < 1, then B = I −A is invertible and has a unique solution. There-

fore ‖x‖ is finite. As r tends to infinity, taking the limit of Eq. (3.8) will conclude

limr→∞∆rx = 0 and the first part of the proof is completed.

Since the random variable η
(r,s)
k−jt(h) is defined along the path, i

(s)
jt
→ i

(s)
jt+1 →

. . .→ i
(s)
k we have

E[η
(r,s)
k−jt(h)] =

n∑
i
(s)
k

· · ·
n∑
jt

η
(r,s)
k−jt(h)P

i
(s)
jt
i
(s)
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· · ·P

i
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k

,

therefore
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The last equation is obtained using the property
∑n
j=1 Pij = 1 and we imme-

diately obtain

E[η
(r,s)
k−jt(h)] = 〈h,

k−jt∑
m=0

AmF (r)〉 = 〈h,∆r
k−jtx〉.

And therefore as Z tends to infinity, θ
(r)
k = 1

Z

∑Z
s=1 η

(r,s)
k converges to ∆r

kx.

So, the second part of the proof is completed.



Adaptive Monte Carlo Algorithms to Solve Option Pricing Problems 147

4. Numerical Test Results

4.1 Linear Equations

In this subsection, we obtain solutions of linear equations using the proposed

adaptive Monte Carlo algorithm and compare the results with Farnoosh and Aalaei

(2015). If x is the exact solution of the linear system and x(r) is the approximate

solution using the adaptive Monte Carlo method at stage r , the L2 absolute

estimate will be

‖x− x(r)‖ = (

n∑
i=1

(xi − xi(r))2)
1
2 .

But the exact solution x is not known, then we use the following formula as the

absolute error of estimation,

(

n∑
i=1

(xi
(r) −

n∑
j=1

Aijxj
(r) − Fi)2)

1
2 .

Example 4.1. Consider a linear system with

Aij =
ρijri∑n
k=1 ρik

,

where ri = c + ρi(d − c) and c = mini
∑n
j=1Aij, d = maxi

∑n
j=1Aij = ‖A‖

and ρi and ρij are pseudo-random numbers uniformly distributed in (0, 1) and

Fi = i, Lai (2009). We consider c = 0.25, d = 0.75 and Z = 100.

The results are shown in Table 1 and 2. It is clear that the proposed adaptive

Monte Carlo algorithm called Proposed AMC and algorithm in Farnoosh and

Aalaei (2015) called AMC1, converges exponentially. However, as we described

in the previous section, in the new algorithm, the number of generated random

numbers and, therefore, the corresponding calculations is reduced. Furthermore,

the Algorithm in Lai (2009) called AMC2 diverged.

4.2 Option Pricing

Example 4.2. Consider an European put option with E = 12, T = 0.5, r =

0.05, σ = 0.2, q = 0, Smin = 0, Smax = 100, N = 300,M = 100.

We obtained the following numerical results. The values obtained by the pro-

posed algorithm, those obtained by the algorithm proposed in Farnoosh and Aalaei

(2015) and the Black Scholes formula are shown in Table 3. Also, the difference
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Table 1: The absolute error of estimation for algorithms in Farnoosh and Aalaei

(2015); Lai (2009) and the proposed algorithm for n = 1000

Stage k = 15000 k = 20

Proposed AMC AMC1 AMC2

1 2.4704× 103 4.9526× 103 4.995× 104

5 9.8124× 10−2 2.2295× 10−1 2.381× 105

9 2.4401× 10−6 4.8934× 10−6 5.047× 105

13 5.2894× 10−11 1.0559× 10−10 8.502× 105

17 4.8355× 10−12 1.9700× 10−11 1.233× 106

Table 2: The absolute error of estimation for algorithms in Farnoosh and Aalaei

(2015); Lai (2009) and the proposed algorithm for n = 3000

Stage k = 45000 k = 20

Proposed AMC AMC1 AMC2

1 1.1784× 104 2.9863× 104 1.4247× 105

5 4.3762× 100 1.4266× 101 3.2243× 105

9 7.5563× 10−4 6.0000× 10−3 5.2573× 105

13 9.7764× 10−7 2.5320× 10−6 7.4809× 105

17 7.5704× 10−10 1.0993× 10−9 9.7569× 105

between the solution obtained proposed algorithm and the Black Scholes model as

the error.

Example 4.3. Consider an American put option with E = 50, T = 3, r =

0.05, σ = 0.25, q = 0, Smin = 0, Smax = 2× S,N = 100.

The values obtained by the proposed algorithm and those obtained by the

algorithm considered in Richardson (2009) are shown in Table 4.

Conclusion

In this paper, we have proposed an adaptive Monte Carlo algorithm to solve large

linear systems of algebraic equations with less random number generation and

therefore more efficient than adaptive Monte Carlo algorithms, which have been

introduced before in Farnoosh and Aalaei (2015); Lai (2009). We have analyzed

the convergence and efficiency of the algorithm in the case of dealing with large

random matrices with sizes 1000 and 3000. It is clear that the proposed adaptive
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Table 3: A comparison with the Black-Scholes price for an European put option

using the proposed algorithm

Asset price Proposed AMC AMC1 Black Scholes Error

4 7.703718942 7.703718940 7.703718944 1.5199× 10−9

6 5.703719949 5.703719970 5.703719211 7.3804× 10−7

8 3.705425339 3.705517843 3.705213181 2.1215× 10−4

10 1.805367502 1.805287951 1.805980466 6.1296× 10−4

12 0.527094565 0.526912877 0.530366373 3.2718× 10−3

14 0.087240205 0.087149526 0.088259744 1.0195× 10−3

Table 4: Comparison of our algorithm with other methods in Richardson (2009)

for an American put option price

Asset price Proposed AMC Proposed AMC Binomial Tree Implicit Euler

M = 500 M = 1000

30 20.0000 20.0000 20.0000 20.0000

35 15.0000 15.0000 15.0147 15.0291

40 10.9212 10.9228 10.9440 10.9492

45 7.9862 7.9924 7.9999 7.9904

50 5.8468 5.8476 5.8547 5.8527

55 4.2811 4.2817 4.2955 4.2891

60 3.1353 3.1358 3.1541 3.1456

algorithm and algorithm in Farnoosh and Aalaei (2015) converges exponentially,

but the number of generated random numbers and, therefore, the corresponding

calculations are reduced in the proposed algorithm. Furthermore, the proposed

algorithm has been implemented to solve sparse matrices which are arising from the

discretization of parabolic partial differential equation arising from option pricing.

The results show the efficiency and accuracy of the proposed adaptive Monte

Carlo algorithm for pricing European and American options pricing. The examples

have been compared with other methods which demonstrate the efficiency of the

proposed algorithm.
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